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Abstract: A method of rare event simulation, termed guanten simudation s introduced.  The term guanium
simulation is used here for this simulation method because the entire ensemble of simulations resembles the parallel
universes model of quantumn mechanics. Quantum simulation is a generalisation of the simulation methods known
as importance splitting or the restart method and also of another rare event simulation method known as importance
sampling. A general scheme for simulations made up of multiple threads in which each thread is assigned a weight
is described and flexible rules which ensure that threads can be cloned or terminated at any time without introducing
bias in simulation estimates is presented. Similar schemes known as the sequential Monte Carlo method, and
the population Monte Carlo method have also been used in physics, control theory, and applied mathematics; the
emphasis on rare event simulation in this paper distinguishes it from that work., A numerical example based on a
simple queueing model with a Gaussian input process is used to ilustrate the method and to compare approaches

based on importance splitting and importance sampling.
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1. INTRODUCTION

Quantum simulation is a simulation method which
makes use, in addition to conventional discrete event
simulation procedures, the spontaneous generation of
clones {copies) of simulation processes which then pro-
ceed with an independent random number stream. Pro-
cesses are also thinned (killed) (o ensure that the total
number of processes stays within reasonable bounds,
or, il desired, so that the total number of active pro-
cesses at one time is fixed. The cloning and thinning
rates will typicaily be state dependent, and the rates are
chosen in such a way that events of greater interest oc-
cur more frequently, and thersfore may be studied with
greater accuracy. As a special case, cloning may occur
whenever a process arrives in a certain state or set of
states.

This method of simulation is similar to imporiance
splitting, also known as the Restart Method, (Villén-
Altamiranc & Villén-Altamirano 1991, Akyamac, Ha-
raszti & Townsend 1999, Gorg & Fiiss 1999). In the
Restart Method, simulations which arrive at certain
boundaries in the simulation state space are restarted
marny times, to provide increased accuracy for estimates
of probabilities in certain regions of the simulation state
space.

The guantum simulation framework presented in this
paper is distinguished from importance splitting in that
there is no use made, in this paper, of any Markov as-
sumption, nor any assumption of finiteness of the state
space, and the flexibility with which cloning and split-

ting rates may be tuned to in order to adapt to individual
problems is maximised. Furthermore importance sam-
pling as well as splitting is naturally incorporated into
the quantum simutation framework.

The concept of importance sampling, eg (Lassila & Vir-
tamo 1999), is also ciosely related to guantum simu-
lation. Importance sampling makes use of an analytic
formula for a change of measure which transforms the
model under consideration into one which can be sim-
ulated quickly. The change of measure is chosen so
that any statistics observed on the modified simulation
can be translated back to the original model. The effi-
ciency of importance sampling is often remarkahie, and
in many cases optimal, but the situations where it is ap-
plicable are limited by the reed to have an analytic for-
mulz for the change of measure. A quantum simulation
in which there is always precisely one thread is pre-
cisely equivalent to an importance sampling simulation.
However, there are plenty of situations where it is useful
to have more than one non-independent thread, and so
quantum simuiation is significantly different from im-
portance sampling.

The term quanium sirmudation is used here for this sim-
slation methed because the entire ensemble of simula-
tions resembles the parallel universes model of guan-
tum mechanics, Perhaps we really are part of a simula-
{ion set up 5o that the mice can find the answer o the
pltimate question, or the question for the ultimate an-
swer!? {as in Douglas Adams’ famous radio series, the
Hitchhikers Guide to the Galaxy).

Another family of methods which takes a broadly sim-
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ilar approach is that of Population Monte Carlo algo-
rithms {Iba 2000). Indeed, the term Quantum Monte
Carlo is sometimes used in relation to some of these
algorithms, and they are applied in some cases o
problems in Quantum Mechanics. A fair description
of the present paper is that methods in the style of
{tba 2000 have been used for problems from and
with the goals and the motivation in the framework of
(Villén-Alamirano & Villén-Altamirano 1991, Akya-
mac et al. 1999, Gorg & Fliss 1999).

Aside from bringing the techniques of Population
Monte Carlo algorithms into the domain of traffic simu-
lation studies, some innovations of a more methodolog-
ical nature have also been contributed:

(i} the method developed here makes no Markovian
assumptions; it is essentially a simulation methed,
rather than an eigenvector computation, as in (Iba
2600y

(ii) the key defining property of the simulations in
the przsent approach is the consistency property,
stated below as (2). Making use of this key prop-
erty as the defining property of the simulation
technique reduces the need to define a range of
techniques and facilitates the use of a broader
range of methods,

It seems that the range of technigues which are valid
and useful, and justified by reference 1o the consis-
teacy principle, s much richer than almost anyone
would imagine at first glance. There is, for cxample, a
widespread view that the importance sampling concept
encompasses importance splitting, as well, perhaps. as
all other sscful rare eveni simulation techniques: the
former view is implicit in (Haraszti & Townsend 1998
for example. However, a little experience with popula-
tion Monte Carlo methods (which are, in a sease, the
natural generalization of importance splitting) should
convince most researchers that the idea that all rare
event simulations can be viewed as imporiance sam-
pling is only tenable in an extremely limited and tech-
nical sense, if at all,

The observed processes generated in a quantum simu-
lation are not individually unbiased and neither are they
independent from each other, so simple uniform aver-
ages should not be used to estimate parameters. An un-
biased estimator of event probabilities, or expectations
of random variables is always available, however, in a
quantom simulation.

This unbiased estimaior is produced in a standard man-
ner for all event probabilities and expectations. Each
thread in the simulation is accompanied by a number,
its weight, denoted by p;{r} for the ith thread af time ¢,
for example.

The estimation rule which applies to any quantum sim-
ulation is as follows. Suppose that the original process
is X, and the guantum simulation exhibits k threads,

X,mj X,ikl. with weights ;m{r), ..., pe(r} at time

t. Then, for any function, £, on the state space of the
simulation,

k

YE(pof) =E XY, o
i=}

for all r > 0. The function f may be defined on the
entire path of the process, not just on its value a1z, A
more general statement of this rule is given later which
makes this more explicit

If there was precisely one thread, this rule would im-
ply thai the weight, p,(1) at dime ¢, was precisely the
Radon-Nikodym derivative of the probability measure
of X, with respect to that of X,‘-kj at this particular point,
This is the estimation rule which is used in an impor-
tance sampling simulation, s0, a quantum simulation
which has precisely one thread at any time is precisely
equivalent to importance sampling,

2. QUANTUM SIMULATION

Definition 2.1 A quantum stochastic process (OSP) is
a coliection of stochastic processes (which we shall
call threads), {X,{i)}fe[_‘.bm‘ i€ I, together with their
weights, pi(¢), i € I, and a prior function, . 7 — [
{which indicates, for each thread, which thread pre-
cedes it in time). The numbers s; and [; denote the times
when thread { starts and finishes.

These weights often have the property that

> omn=1, >0,

e T <r< fi

however, this is not essential.

The index set, I, 1s always finite and at any time, 1,
we expect the total number of active simulations o be
significantly less than the total number of elements in
I. When one stochastic process (or simulation) stops,
in many cases, one or more other stochastic processes
will continue from where this one left off. We therefore
need a mapping, ¢ [ — I, which designates, for each
thread of which prior thread this thread is a continu-
ation. Thus, forany i € [, j = (¢} is another thread
such that f; = 5;. There may be more than one thread,
{, such that j = $(i}, which is meant to indicate that the
thread j has fathered a coliection of children. The sum
of the weights of the collection of all the children of
any thread which has children should equal the weight
of the father thread, i.e.

Z{ps(sf‘?") 2ol = it =pi(f-),

i which 1+ denotes a value infinitessimally larger than
t and {— denotes a value infinitessimally smaller than 7,

It is also possible that a thread may terminate and not
leave behind any children. In this case, the weight of the
terminating thread will need to be distributed amongst
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some other threads, in order that the property (1) is pre-
served.

The function, ¢ and the weights p; are required for any
QSFE even if it is simply a random number stream. In
practise the function ¢ does not need to be used explic-
itly. The reason why we might neced to make use of
this function is that the definition of an event could,
in principle, force consideration of a range of vaiues
which extends back to times earlier than the start of the
present thread. In such a case, we shall need to trace
the process back through this point where the cloning
oceurred. This is where the prior fiunction has its role.
In many cases the events of greatest interest do not need
to make use of the prior function. Cn the other hand,
when we need to prove that a quantum simuiation has
certain properties or that certain procedures should be
used, we shall nzed to make vse of the prior function,
becavse formally speaking, it is an essential feature of
the guantum simulation.

2.1  Consistency Property

We want a QSP to be able to substitute for a normal
stochastic process, i.e. any use to which a conventional
process (or simuolation) can be put, there should be a
standard way to use a QSP in the same way, The fol-
lowing consistency property 1s required to hold in order
that we can substitute a QSP {{X,[’] hie I} fora con-

ventional stochastic process {X;}.

Definition 2.2 Let % denote the space of measurable
seis defined in terms of the past of a process {X}.,
which we shall denote also by G{{X,},}, let I{t) de-
note {i € 118 <1< fi}, and for each i € I{t) de-
Jfine the stochastic process {X,{f}} as the concatena-
tion of the thread i together with the sequence of suc-

cessive’ prior threads, and let FF = G{{X,{i} },}, the
sigma algebra of events defined in terms of the past
of the process {X\V}. All the sets F! are isomor-
phic to | and the isomorphism will be denoted by
{I),m o~ FL This isomporphism is uniguely de-
fined by the fact thar G),(i){{w:}{,1 (W) €4, . X, (o€
Ap={o:xM ey ea.. xMo) e A Then, a
OSF is consistent with the stochasiic process (%} if,
forallte R Ec 'R,

£ (pr(”x{x,mwsfm}) =PiGeLy @)
el

{nformally, this definition says that a Q8P is consis-
tent with a conventional stochastic process so long as
the estimates formed by means of weighted averages,
using the weights, always have the same mean as the
corresponding estimates in the context of the conven-
tional stochastic process. We shall always assume that
a QSP is consistent in this manner with some conven-
tional stochastic process. We hereby adopt this property

as a defining characteristic of a guantum simulation of
a process {X }.

2.2 Cloning and Thinning

The procedure of cloning and thinning may be applied
to a conventional stochastic pro¢ess or o a process
which is already a QSP. In order to allow for a sequence
of cloning and thinning steps, it is important to describe
how it is carried out on a process which is already a
Q5P

Suppose we have an existing QSP {(or a conventional

. | 1 : F e
stochastic process), {{X, bier . Cloning of this pro-

cess is the process of replacing some of the threads by
two or more threads. Suppose the thread to be cloned
is {X,[‘i},elu‘h} and the cloning is to take place at time
T € {a,b). We shall replace this thread by the two
threads {X,Er’}}fegr‘hg and {X}'”]},E[T.h] in the period of
time after 7. The statistical evolution of these processes
is chosen in such a way that the processes formed by

. o
adjoining {er}re{a.bl up to time T and {X,[I ]},6[1',,} or
o
{Xr[' }},E[T‘b] afterwards are statistically identical w0 the

process {X,['J},E[ﬂ‘,-,i. In a simulation, we can ensure that
the two threads are statistically identical to the original
process simply by using the same software, but with
different random numbers.

The weights of the processes with indices i and /" must
add up to the weight of the process with index / and
the prior function for the cloned process is identical to
the prior function for the original process (which would
have been empty if the original process was actually a
conventional stochastic process), together with the as-
signments

The two threads which replace thread § afier time T will,
typically, be chosen to evolve independently. As a con-
sequence there is a gain of statistical efficiency from
this time on (at the cost of having to undertake more
work on these two simulations than previously on only
one). The time t can be chosen arbitrarily, and also the
choice of thread to be cloned can be chosen in any way
at ail. Typically these cheices would be made o en-
hance statistical accuracy in a particular region of the
state space explored by the process under study.

Note: If the QSP {{X,lf]}, HE I} is consistent with
the stochastic process {{X;}}. then so is any cloned
Q5P {{}'{v}m}; e I’} obtained from {{X,gil}; e I}
by one or more clonings as defined in the previous para-
graphs,

Proof of this consistency result is simple. The proof
reduces, by induction, to the case where there is only
one cloning. And consistency in the case where there is
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only one cloning follows directly from the fact that the
two threads which replace one, in the interval [1, 5], are
statistically identical to the original thread and therefore
any weighted average of observations from these two
threads will be consistent with the original simulation
50 long as the sum of the weights in the average is one.

Thinning is easy o define. It occurs when a certain
thread is terminated before the simulation has com-
pleted. There is no need fo alter the prior function,
The weight of the thinned thread must, however be re-
assigned. If this is not done or if it 1s done in the wrong
way, the consistency property will no longer hold.

The basic rule for thinning is that if one thread is chosen
o remain from a group of candidates, the identity of this
thread which remains must be selscted randomiy with
a probability in proportion to its weight. The group of
candidates Tor thinning may be chosen arbitrarily, and
in this way the state of the process may be taken into
account. For example, threads to be thinned might al-
ways be chesen from among those straying into a “bor-
ing” part of the state space. Alternatively, if desired,
precisely one thread could be chosen to be thinned,
from a set of candidates. In this case. the probability
of selecting a thread sheould be in proportion to the sum
of the weights of the other threads. Other variations
along these lines are possible. As always, the constraint
which distinguishes acceptable from unacceptable tech-
niques is that the equation {2) must be preserved.

S0 long as thinning is carried out in this manner, the
consistency of the QSP with the underlying modei can
be preserved. Incidentally, one of the advantages of us-
ing this rule for thinning unwanted threads is that they
can be eliminated fairly aggressively thereby avoid-
ing spending unnecessary compuitation time on threads
which are of Httle interest.

3. COMPARISON OF APPROACHES
TO RARE EVENT SIMULATION

The relationships between the three types of rare event
simulation discassed in this paper are as follows:

Quantum simulation is & generalisation of importance
splitting and of importance sampling. The fact that
quantum simulation generalises importance sampling
foliows from a consideration of the estimation proce-
dures used in each method, In quantum simuiation, es-
timates sre formed from a weighted average over results
from individual threads. In Importance Sampling, the
estimate is formed by weighting observed results ac-
cording to the Radon-Mikodym derivative. The weights
in the guantum simulation stand in place of this Radon-
MNikodym desivative. The consistency rule for a quan-
tum simulation is the natural generalisation for the case
where the observations are made on multiple threads of
the rule which is used in Tmportance Sampling,

To show that quantum simulation generalises impor-
tance splitting, it s necessary to define importance

splitting more precisely, which 1s not feasible in the lim-
ited space available in this paper. Suffice it to say that in
importance splitting approach, cloning tends to occur at
precise state space boundaries, and canditional distribu-
tions of state space probabilities are estimated at these
boundaries, and then used to make estimates of event
probabilities and expectations. However, careful exam-
ination of these calculations shows that they reduce to
the weighted average defined in (2). More details can
be found in (Addie 2001).

Not all quantum simulations can be viewed as arising
as an importance sempling type of simulation, or anim-
portance spiitting type of simulation. In the case where
more than one thread is being simulated at once, itis not
possible to identify the weights with Raden-Nikodym
derivatives, which shows that quantum simulaton is not
a type of importance sampling simulation. The fact that
both importance sampling and importance splitting can
be put into the common framework of quantum simuia-
tion also distinguishes it from either of these two wech-
niques.

It 35 possible, however, to simulate the effect of impor-
tance sampling by means of the importance splitting
type of approach — this can be done by simply under-
taking splitting in proportion to an appropriate Radon-
Nikodym derivative. However, when the distorted prob-
ability measure differs from the original probability
model by more than a certain degree, the process of
simulating an importance sampling simulation by an
importance splitting simulation becomes impractical.

Important sampling simulations are generally faster
than importance splitting simulations. This flows from
the fact that analytical information which is known
about the model under study is taken into account in
an imporiance sampling simulation, Also, it is often
the case, although not essential, that an aitempt will
be made in an importance sampling simulation to es-
tablish the optimal amount of distortion of the original
probability model. whereas in importance splitting style
simulations an attempt at optimisation in this manner is
often not possible, because less analytical information
about the model is available.

4. NUMERICAL EXAMPLES

To start with, let us consider 2 simulation of a queue,
the input 1o which is a series of Gaussian numbers with
mean -2 and standard deviation 1. These were simu-
lated using quantum simulation in a form related to im-
portance sampling but which uses multipie simuliane-
ous threads and cloning and thinning to select which
threads should be continued {so that, for example, a
genetic algorithm can be used to find, adaptively, the
optimal level of distortion at any time during a simula-
tion). One thread evolves naurally, while all the oth-
ers evolve in a distorted manner, as in Importance sam-
pling. Thinning is used to eliminate threads when their
weight becomes insignificant and cloning of the natural
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thread is used to generate replacement threads. In this
way, the entire coliection of threads is able to track the
dynamics of the natural simulation even though most
individual threads follow a path which leads inexorably
o more and more unfikely events,
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Figare 1. Simulation results and theoretical estimate
for the complimentary waiting time distribution in a
Gaussian queue {mean -Z) — importance sampling case

The results are plotted, together with the expected re-
sults from theory (according to {Addie, Mannersalo &
Norros 2001)), in Figure 4.. The simuiation results and
the theoretical results overlap almost perfectly. This
simulation inciuded ten simuitaneous threads, one of
them completely conventional, and the others distorted
in the manner of importance sampling.

From large deviations (Addie et al. 2001), we know that
the optimal importance sampling simulation will meke
use of distorted probability measure, ¥, in which the in-
put to the queve becomes HD Gaussian with mean 2
{instead of -2} and with unchanged standard deviation,
If any other distortion of the input process is used, the
results achieved will be less accurate.

The duration of this simulation was 100 cycles of input,
buffering, and service, all of which is modelled by the
simple equation:

BH.] = Max (Br +X;,0}

in which {B,} denotes the contents of a buffer at time
1, starting with By = 0, X; denotes the ner input to
this buffer, which is an independent and identically dis-
tributed sequence of Gaussian random variables with
mean -2 and standard deviation 1,

Figure 2 shows the manner in which the weight of one
of the distorted threads changes during the simulation.
The weight of a thread reduces steadily due to the fact
that the Radon-Nikodym derivative tends to decrease
steadily. Soon after the weight of a thread becomes the
lowest of all the weights of threads in the simulation,
the thread is likely to be killed. at which time it ap-
pears to have retumed to a weight near one, in the plot
showa in the figure. The plot then shows the weight of
a thread which has been produced by cloning the top
thread. This thread therefore starts with weight close
to 0.5 and this weight steadily reduces to a value near
10739, again.

1.-107 a ‘\ { ff\
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Figure Z: Example of Variation in Weight during a
Quantum Simulation of a Gaussian Queue

The ¢lapsed time for the simulation discussed here ©
complete, as implemented in mathematica, running un-
der Linux, was less than one minute. However, it is
meaningless to talk about how much faster this simu-
lation is than a conventional simuiation, since a con-
ventional simulation would not be able to achieve the
indicated accuracy levels by now even if it was started
Jjust after the big bang.

These simulations were repeated using quantum simu-
iation in a form based entirely on cloning and thinning,
Le. no importance sampling or distortion of the input
process was adopted. The simulation resuits and the
theoretical results still overlap quite well although not
as well as in the tmportance sampling case. This can be
explained by the fact that the distorted distribution of
the input to the gucue is Bot gptimal in this case. The
time taken to carry out this simulation was much longer
and the accuracy was greatly reduced. Approximately
1000 times as many random numbers had to be gener-
ated in order to simulate the same period of time and
the simulation time was at least doubled.

The knowledge of a large deviations principal for this
particular system is still being used in the present simu-
lation, but in an indirect manner, and in 2 manner which
could be avoided, with some effort. One way to avoid
the use of the known farge deviations principal would
be to infer the appropriate large deviations principal
from the simulation, dynamically. The thinning phase
of a quantum simulation can be used to have this effact,
as was touched upon carlier.

In Figure 5., estimates of the complimentary queueing
distribution function obtained after 20, 40 and 500 it-
erations of a quantum simulation of a Gaussian corre-
lated queuneing system are shown. In this case, the input
process had mean ~1.7, standard deviation 1.22, and au-
tocovariance 1.49,0.72,0.18, —-0.2.0,.... The theoret-
ically expected stationary complimentary distribution
function is also shown, for comparison. Confidence in-
tervals are shown for the estimate obtained at iteration
500. H is apparent that by iteration 500 the estimated
distribution is very close to the stationary distribution.
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Figure 3: Simulation results and theoretical estimate
for the complimentary waiting time distribution in a
Gaussian queue (mean -2) - importance splitting case

5. CONCLUSION

Quantum simuiation has been introduced and compared
with the well known existing methods of importance
sampling and importance splitting and it is shown that
both of these methods can be viewead as special cases. A
quantum simulation with precisely one thread is equiv-
alent to importance sampling and a quantum simulation
in which cloning occurs at certain regions of the state
space is equivalent te importance splitting.

Tn addition, rules for thinning have been defined which
ensure that the quantum simulation estimators are al-
ways unbiased; and it has been demonstrated how lm-
portance sampling style simulations ¢an be achieved by
means of simulations which use splitting and thinning.

Numerical examples have been used to demonsirate the
effectiveness of quanturs simulation and to demonstrate
the reiationships between imporiance sampling impor-
tance splitting and quantum simulation. From these ex-
amples, and more theoretical considerations, it is clear
that in cases where sufficient analytical information i3
available to carry out importance sampling, it is likely
that importance sampling will produce more accurate
results in a shorter time. However analytical informa-
tion of this sort is often not available, and when it is
available, the models in question are often sufficiently
well understood that simulation is no longer necessary.

Quantum simulation is 2 geagral purpose igchnigue
which can be used to increase the speed and accuracy
of estimation of rare events in any simulation. Quantum
simulation is currently being used to model 2 commu-
nications system carrying traffic modelled in a realistic
manner which is currently difficult to either analyse or
simulate with adeguate accuracy.
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